Efficient exploration through active learning for value function approximation in reinforcement learning
نویسندگان
چکیده
Appropriately designing sampling policies is highly important for obtaining better control policies in reinforcement learning. In this paper, we first show that the least-squares policy iteration (LSPI) framework allows us to employ statistical active learning methods for linear regression. Then we propose a design method of good sampling policies for efficient exploration, which is particularly useful when the sampling cost of immediate rewards is high. The effectiveness of the proposed method, which we call active policy iteration (API), is demonstrated through simulations with a batting robot.
منابع مشابه
Active Policy Iteration: Efficient Exploration through Active Learning for Value Function Approximation in Reinforcement Learning
Appropriately designing sampling policies is highly important for obtaining better control policies in reinforcement learning. In this paper, we first show that the least-squares policy iteration (LSPI) framework allows us to employ statistical active learning methods for linear regression. Then we propose a design method of good sampling policies for efficient exploration, which is particularl...
متن کاملManaging Uncertainty within Value Function Approximation in Reinforcement Learning
The dilemma between exploration and exploitation is an important topic in reinforcement learning (RL). Most successful approaches in addressing this problem tend to use some uncertainty information about values estimated during learning. On another hand, scalability is known as being a lack of RL algorithms and value function approximation has become a major topic of research. Both problems ari...
متن کاملDeep Exploration via Randomized Value Functions
We study the use of randomized value functions to guide deep exploration in reinforcement learning. This offers an elegant means for synthesizing statistically and computationally efficient exploration with common practical approaches to value function learning. We present several reinforcement learning algorithms that leverage randomized value functions and demonstrate their efficacy through c...
متن کاملAngrier Birds: Bayesian reinforcement learning
We train a reinforcement learner to play a simplified version of the game Angry Birds. The learner is provided with a game state in a manner similar to the output that could be produced by computer vision algorithms. We improve on the efficiency of regular ε-greedy Q-Learning with linear function approximation through more systematic exploration in Randomized Least Squares Value Iteration (RLSV...
متن کاملAdaptive-Resolution Reinforcement Learning with Efficient Exploration in Deterministic Domains∗
We propose a model-based learning algorithm, the Adaptive-resolution Reinforcement Learning (ARL) algorithm, that aims to solve the online, continuous state space reinforcement learning problem in a deterministic domain. Our goal is to combine adaptive-resolution approximation scheme with efficient exploration in order to obtain fast (polynomial) learning rates. The proposed algorithm uses an a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural networks : the official journal of the International Neural Network Society
دوره 23 5 شماره
صفحات -
تاریخ انتشار 2010